On Representing Claims for Coherent Risk Measures
نویسندگان
چکیده
We consider the problem of representing claims for coherent risk measures. For this purpose we introduce the concept of (weak and strong) time-consistency with respect to a portfolio of assets, generalizing the one defined in Delbaen [7]. In a similar way we extend the notion of m-stability, by introducing weak and strong versions. We then prove that the two concepts of mstability and time-consistency are still equivalent, thus giving necessary and sufficient conditions for a coherent risk measure to be represented by a market with proportional transaction costs. We go on to deduce that, under a separability assumption, any coherent risk measure is strongly time-consistent with respect to a suitably chosen countable portfolio, and show the converse: that any market with proportional transaction costs is equivalent to a market priced by a coherent risk measure, essentially establishing the equivalence of the two concepts.
منابع مشابه
On Representing and Hedging Claims for Coherent Risk Measures
We consider the problem of representing claims for coherent risk measures. For this purpose we introduce the concept of (predictable and optional ) timeconsistency with respect to a portfolio of assets, generalizing the one defined by Delbaen. In a similar way we extend the notion of multiplicative, or m-stability, by introducing predictable and optional versions for a portfolio of assets. We t...
متن کاملExploring the relationship between the hedging strategies based on coherent risk measures and the martingale probabilities via optimization approach
An application of the duality theory of linear optimization leads to the well known arbitrage pricing theorems of financial mathematics, namely, the equivalence between the absence of arbitrage and the existence of an equivalent martingale probability measure. The prices of contingent claims can then be calculated based on the set of martingale probability measures. Especially, in the incomplet...
متن کاملOn the Coherent Risk Measure Representations in the Discrete Probability Spaces
We give a complete characterization of both comonotone and not comonotone coherent risk measures in the discrete finite probability space, where each outcome is equally likely. To the best of our knowledge, this is the first work that characterizes and distinguishes comonotone and not comonotone coherent risk measures via AVaR representation in the discrete finite probability space of equally l...
متن کاملRisk Measures and Nonlinear Expectations
Coherent and convex risk measures, Choquet expectation and Peng’s g-expectation are all generalizations of mathematical expectation. All have been widely used to assess financial riskiness under uncertainty. In this paper, we investigate differences amongst these risk measures and expectations. For this purpose, we constrain our attention of coherent and convex risk measures, and Choquet expect...
متن کاملNonlinear expectations and nonlinear pricing ∗
As the generalizations of mathematical expectations,coherent and convex risk measures, Choquet expectation and Peng’s g-expectations all have been widely used to study the question of hedging contingent claims in incomplete markets. Obviously, the different risk measures or expectations will typically yield different pricing. In this paper we investigate differences amongst these risk measures ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008